
An Ontology for Smart Contracts

Darryl McAdams
Input Output Hong Kong

Email: darryl.mcadams@iohk.io

I. INTRODUCTION

This paper introduces a basic ontology that attempts to
capture the essential features of many smart contracts, in order
to aid in formal reasoning about their behavior. Section II gives
a general overview of the proposed ontology, and Section III
gives analyses of a number of interesting smart contracts from
the literature, through the lens of this ontology. The proposals
here are not intended to be the One True Ontology, but rather
a useful ontology. A well-designed blockchain should be able
to support arbitrary such ontologies.

II. THE ONTOLOGY

An ontology is a collection of concepts (or kinds, types)
which are seen as the most fundamental way of viewing a
problem domain, and the relationships that hold among them.
In the context of particle physics, the ontology is the Standard
Model of particles and the various associated fields.

In the context of smart contracts, a number of concepts
arise over and over, which constitute this domain’s ontology.
This paper assumes that smart contracts fundamentally are
stateful computations consisting of some state value which
changes over time, and a fixed, unchanging transition function.
Precisely what constitutes a state, and how many states there
are, is entirely dependent on the smart contract, and might
be as simple as a token representing a state in a finite state
machine (e.g. q3) or it might be some richer piece of symbolic
data.

The ontology provides concepts for thinking about such
contracts, abstracted over the details that are contract-specific
or orthogonal to the macroscopic behavior, and are as follows:

Agent An Agent is a participant in a contract, whether that
means a person, an organization, a piece of software, or
something else. Agents take actions which affect the state
of a contract.

Event An Event is a transition from one state to another.
Events are brought about by Agents invoking the tran-
sition function on the most recent state.

Object An Object is something that is manipulated by a smart
contract and may be transferred between Agents. Who
can manipulate it and how is determined by the contract.
Some Objects might have constraints on usage, such as
who they can be transferred to (e.g. a “gift card” that can
only be spent at certain retailers).

Time Time is the extrinsic notion of time, which passes at
rates independent of the block chain. It is distinct from
the internal before-after ordering that blockchains exist to
creat. Time is calendar time.

Modality Modalities are higher-order phenomena that de-
scribe the relationships between states in the totality of

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 1. Relationships between states. The present is larger and red. Arrows
represent events that transition one state to another, creating a notion of time.

what is logically possible. Modalities quantify over past or
future states in relation to a given current state, and allow
concepts of possibility, necessity, and so on. Modalities
come in two main flavors:
Vertical A Vertical Modality quantifies over the alterna-

tive futures that are compatible with the given present
state. Concepts like “must” and “may” are fundamen-
tally vertical, because they describe only the existence,
or not, of events of some kind. Something “must” occur
if every future has that thing occurring, while it “may”
occur if at least one future has it occurring.

Horizontal A Horizontal Modality, which may also be
called a Temporal Modality, quantifies over sequences
of states. Concepts like “eventually” and “never” are
fundamentally horizontal because they describe the in-
ternal structure of alternative futures. Something “even-
tually” occurs if at some future, it occurs, but maybe
only after many events have taken place. Something
“never” occurs if there is no number of events after
which it occurs.

The terminology “Vertical” and “Horizontal” come from
visualization. We may imagine that a sequence of state
transitions is like a time line laid out left to right, as in
Figure 1. At any given state, there is a past extending to
the left, and a variety of futures extending to the right.
Each future is geometrically related to that state by being
horizontally offset from it, but is vertically offset relative
to other futures of that state. It may even be the case that
a state has multiple pasts, as there may be multiple ways
to have come to that state.

Some other things which are related to the ontology, but
which are considered more fundamental in this paper, are
notions like information, knowledge, identity, secrets, and
verification. These are all related notions involving information
theory and cryptographic protocols, and reasoning about them
is extremely difficult. There is also a substantial literature on
that subject already, which can provide a better set of tools
than this paper could.



III. ANALYSES OF SMART CONTRACTS

This section analyzes a number of smart contracts from the
literature. This is not intended to be a comprehensive overview
of the full range of ways to apply this ontology, nor of smart
contracts. Rather, it is intended to give some intuitions for how
the ontology is applied, and how it can be used to describe
properties that lead to bugs when they fail to hold.

A. Simple Transfer

In a Simple Transfer, a participant, the Sender, Transfers
control of an Item, often some form of money, to another
participant, the Recipient, who is known before the sending.
In the usual construal of Transfers, this involves the Sender
granting to the Recipient the ability to further do with the
item as they please.

Using the ontology, we can identify the Sender and Re-
cipient as Agents, the Item is an Object, and the Transfer as
an Event, which transitions the system to a state where the
Recipient has exclusive ability to further transfer the Item.

The exclusive ability of the Recipient to further use the
Item constitutes a modal quality of the system. In particular,
we want it to be true that the Recipient can use the Item. So we
want it to be true that for any possible kind of Event initiated
by the Recipient and involving the Item can be initiated from
that resultant state. Further, the exclusivity of this ability means
that we want it to be true that no other Agent can initiate any
kind of Event involving the Item from that resultant state.

B. Multi-Sender Transfer

A Multi-Sender Transfer is like a Simple Transfer, except
that there are multiple Sender participants. Each Sender must
authorize the Transfer, which usually happens via a sequence
of Events that collect up the individual authorizations into an
aggregate state. We therefore have a pair of modal properties
that are required.

The first is that for any non-final state of the system, any
Sender may initiate an Event that adds their authorization to
the state (possibly redundantly), and only Senders may do this.
In some sense, this is like the multi-recipient example except
that here we have multiple actions in a sequence, rather than
multiple alternative actions.

The second modal property is the same as for a single-
recipient example, namely that the Recipient, and only the
Recipient, may initiate any sort of Event from the resultant
state of the whole Transfer.

C. Multi-Recipient Transfer

A Multi-Recipient Transfer is like a Simple Transfer,
except that there are multiple Recipient participants who have
the ability to further transfer the Item. The modal quality we
want to hold is therefore that any of the Recipients can initiate
an Event, but that no Agent other than one of them can do so.

Both Multi-Sender and Multi-Recipient transactions can be
seen as just different versions of the general M-of-N pattern.
They’re distinguished here just for the sake of highlighting
different aspects of the modal content.

D. Deadline-dependent Transfer

A Deadline-dependent Transfer (described in [1] section
2.3 as an example of a financial swap) is like a Multi-
Recipient Transfer except that the Recipients have ownership
rights during different time periods. In particular, prior to some
deadline (perhaps a time, or an event, or some other condition),
only Recipient 1 may transfer the Item, and after the deadline,
only Recipient 2 may transfer the Item.

A typical use is to ensure that a smart contract, such as in
a game where information flow is important, always remains
alive, in some sense. That is to say, no participant’s failure to
act can deadlock the contract and cause others to permanently
lose money. The modal content of interest is the claim that
there will always be a state where someone completely controls
the Item. Every possible future state, and also the current one,
is such that there will always be a definite owner of the Item
after the deadline has passed.

E. Rock, Paper, Scissors

In a blockchain-based game of Rock, Paper, Scissors (as
described in [1] section 4) two players, Player 1 and Player
2, each provide their choice (either rock, paper, or scissors)
together with some Item, after which the game moves into a
state where one or the other Player can take possession of the
Items by being allowed to transfer them.

Through the lens of the ontology, the game consists of two
Agents, Player 1 and Player 2, who must each initiate an Event
that contributes some Object to the game before the game is
officially in play. This is a pair of modal properties, consisting
of the possibility for an arbitrary Agent to initiate the first
such Event, and then in the resulting state, the possibility for
another arbitrary Agent to initiate the second such Event. In
this third state, there is a disjunctive possibility, that either its
possible for Player 1 exclusively to initiate some Events, or its
possible for Player 2 exclusively to do the same.

IV. HOW TO REASON, WHAT TO REASON ABOUT

The ontology described above is a set of basic conceptual
primitives that can be used to reason about smart contracts, but
of course we must also have the actual formal tools to reason
about smart contracts, and we must have some actual system
that can be used to implement smart contracts.

The modal nature of the ontology suggests very strongly
that we should make use of coalgebraic models of program-
ming language semantics. The techniques described in [2], for
instance, could form the basis of such a framework. We can
also make use of proof theoretic tools, such as temporal type
theory and lax modal type theory [3], as a framework for
reasoning about smart contracts. Work on linear epistemic type
theory [4] [5] may also be relevant, as it is the type theory for
distributed authorization systems, which is a fairly accurate
description of what a blockchain-based smart contract is.

As for the substance of a smart contract, there are many
options that are possible. The most straight forward is to
explicitly define the coalgebraic information in a normal pro-
gramming language. For example, suppose that the state is just
a token for a finite state machine. We would need to define a
type of state tokens, a type of interactions that the participants



in a smart contract can engage in, an initial state for the
system to run from, and a transition function that defines how
computation proceeds in response to an interaction. In Haskell,
then, we might simply declare

data StateToken = ...
data Interaction = ...

initialState :: StateToken
initialState = ...

transition :: Interaction
-> StateToken -> StateToken

transition = ...

Provided that we have a good model of the behavior of
the host language, this would suffice. This is especially good
if the host language is guaranteed to terminate, because then
we can be certain than each individual transition will happen
in finite time, even if the entire smart contract may proceed
indefinitely into the future. A canonical example of such a
program is a web server, where you want every request to
terminate and return an answer (the web page), but you want
the whole server to continue running indefinitely.

Writing a smart contract in this setting may not be ideal,
however. It requires that the programming encode the behavior
of the contract into the state and the transition function, which
may not be the most intuitive representation, even if it’s
beneficial for computation. And alternative would be to define
a domain specific language that more directly captures the
nature of smart contracts as the primitives of the language, and
enabls direct reasoning. This could then be compiled down
into a language that makes execution easy, or an execution
environment could be developed specifically for it.

Another option that blends the two would be to develop
an embedded domain specific language. If we have a general
purpose language such as Haskell, where we can define
custom types and functions, the smart contract domain can
be represented as just such a collection of those. This is the
method typically used for EDSLs in Haskell, such as image
and audio libraries.

V. DISCUSSION

As can be seen from these example smart contracts, the
use of a modal ontology where states are related by events
can capture many important properties. Not only can we
express rights that an Agent has by making a modal claim
about possible events that the Agent may initiate, we can also
express obligations by expressing that inaction can never cause
deadlock. We can use these same techniques to express richer
notions related to liveness to ensure that a contract can never
get stuck in inescapable loops due to attacks.

There are important limitations to what can be expressed
here, however. Stateful systems like smart contracts are ef-
fectively computers, and without severe restrictions on what
constitutes the states of the contract, we may never be able
to prove certain things. For instance, one might be tempted to
prove that a given smart contract will always reach some final
state where the contractual rights end, and obligations have
all been fulfilled or else the contract has ended prematurely.
However, if the states of the contract consist of Turing Machine

tape and control states, then it may be impossible to prove.
Since we can embed a Turing Machine into a contract, we run
into the Halting Problem.

It is not desirable to limit the state of contracts, however. It
is hard to predict just what uses people will have, and perhaps
running a Turing Machine is perfectly reasonable. A library of
contractual templates can be constructed, however, and these
properties can be proven about them independent of particular
instantiations, allowing users to easily get verifiable behavior.

Another interesting possibility is to view the stateful modal
structure through the lens of virtual machines and compiler
design. It may be possible to construct programming languages
which have easily checked termination conditions which com-
pile down into transition systems of this sort. The properties
may then be easier to prove because they can be applied
instead to the programming language not to the state machine
that actually implements the contract. Precisely what such a
language would look like is a possible future research topic.

Further work may also be needed to incorporate reasoning
about knowledge. The ontology given above assumes that
knowledge is a more primitive notion than what the ontology
aims to capture, but this may not be true. Many smart contracts
rely on temporary information hiding to function, and so it
may be desirable to express the capabilities of Agents at any
one time both with modalities and also with claims about how
much they know relative to requirements of the system. work
on linear epistemic logic for distributed authorization may
be relevant here. However, this topic is also very broad, as
knowledge and secrets can be construed to include any kind
of information leak. Should we wish to express in a smart
contract that no information about a number’s parity is leaked
by a set of Events? Perhaps, but this will require a great deal of
information-theoretic proofs, or a very powerful type theory for
secure computing. Both of these are very complicated. Security
is also an issue for lower levels of blockchains, not just the
level of contract logic, and so this may be the wrong part of
the system to put that into.

ACKNOWLEDGMENTS

I want to thank Lars Brünjes, Vitalik Buterin, Yoichi Hirai,
Pablo Lamela, Alex McSherry, and Simon Thompson for their
comments and discussion. It was invaluable to have their per-
spectives, especially where it revealed hidden presuppositions
on my part about what the reader knew.

REFERENCES

[1] Delmolino, K., et al. Step by Step Towards Creating a Safe
Smart Contract: Lessons and Insights from a Cryptocurrency Lab.
https://eprint.iacr.org/2015/460.pdf

[2] Backhouse, R., Crole, R., and Gibbons, J. Algebraic and Coalgebraic
Methods in the Mathematics of Program Construction.

[3] Pfenning, F., and Davies, R. A Judgmental Reconstruction of Modal
Logic. https://www.cs.cmu.edu/ fp/papers/mscs00.pdf

[4] Garg, D., and Pfenning, F. Stateful Authorization Logic – Proof Theory
and a Case Study. http://www.cs.cmu.edu/ fp/papers/jcs12.pdf

[5] DeYoung, H., and Pfenning, F. Reasoning about the Conse-
quences of Authorization Policies in a Linear Epistemic Logic.
http://www.cs.cmu.edu/ fp/papers/fcs09.pdf


