
Beigepaper:
An Ethereum Technical Specification

Micah Dameron

Abstract

The Ethereum Protocol is a deterministic but practically unbounded state-machine with two basic functions;
the first being a globally accessible singleton state, and the second being a virtual machine that applies
changes to that state. This paper explains the individual parts that make up these two factors.

1. Imagining Bitcoin as a
Computer

Ethereum utilizes the distributed ledger model that
originated with Bitcoin and repurposes it to model a
virtual computer, giving machine level opcodes the
same level of certainty as Bitcoin transactions. Just
as sure as you can be certain that Bitcoin’s ledger
is accurate and that timestamps are correct through
the Bitcoin consensus mechanism, just so sure is it
that machine instructions initiated on Ethereum will
execute.

In other words, programs executed on the Ethereum
Blockchain are basically unstoppable. However,
that’s not to say that writing bad code is impossible,
because bad and buggy code can be written and exe-
cuted on Ethereum the same way it can on any other
computer. More precisely it means that code can
be trusted to execute without any interference from
external non-network forces. This property arises
from the inherent security of the blockchain which is
built by, and maintained upon, cryptographic proofs.

1.1. Native Currency

Because Ethereum aims not at being a currency, but at
modeling a computer, there is a fundamental network
cost unit used to mitigate the possibility of abusing

the network with excessive computational expendi-
tures. The smallest unit of currency in Ethereum is
the Wei, which is equal to Ξ10−18, where Ξ stands for
1 Ether. All currency transactions in Ethereum, at
the machine level, are counted in Wei. There is also
the Szabo, which is Ξ10−6, and the Finney, which is
Ξ10−3.

The Ethereum network is subservient to others
in terms of one thing only: Ether, the native cur-
rency for Ethereum. Everything the system can do is
bounded up in its ability to expend Ether in exchange
for a particular amount of system performance in a
certain direction.

Unit Ether Wei

Ether Ξ1.000000000000000000 1,000,000,000,000,000,000

Finney Ξ0.001000000000000000 1,000,000,000,000,000

Szabo Ξ0.000001000000000000 1,000,000,000,000

Wei Ξ0.000000000000000001 1

2. Memory and Storage

2.1. World State

The world state is divided by blocks; each new block
representing a new world state. The structure of the
world state is a mapping of addresses and account
states through the use of the recursive length pre-
fix standard (RLP). This information is stored as a

1



2. Memory and Storage Beigepaper February 22, 2018–Version 0.9.5

Merkle-Patricia tree in a database backend.a that
maintains a mapping of bytearrays to bytearrays.bcAs
a whole, the state is the sum total of database rela-
tionships in the state database.

2.1.1. Merkle-Patricia Trees

Merkle-Patricia Trees are modified Merkletrees where
nodes represent individual characters from hashes
rather than each node representing an entire hash.
This allows the state data structure itself to represent
not only the intrinsically correct paths in the data, but
also the requisite cryptographic proofs which go into
making sure that a piece of data was valid in the first
place. In other words, it keeps the blockchain valid
by combining the structure of a standard Merkletree
with the structure of a Radix Tree. Since all searching
and sorting algorithms in Ethereum must be filtered
through this stringently correct database, accuracy of
information is guaranteed.

The following is a search tree beginning with hex-
adecimal values a and 4:

a

2

c

7

b

6

6

2

4

9

7

f

f

a

c

9

5a2c7 a2b6

a62

497ff 4ac95

2.1.2. Tree Terminology1

a) Root Node – The top (first) node in a tree.

b) Child Node – A node directly connected to
another node when moving away from the Root.

c) Parent Node – The converse notion of a child.

d) Sibling Nodes – A group of nodes with the
same parent.

e) Descendant Node – A node reachable by re-
peated proceeding from parent to child.

f) Ancestor Node – A node reachable by repeated
proceeding from child to parent.

g) Leaf Node – A node with no children.

h) Branch Node – A node with at least one child.

i) Degree – The number of subtrees of a node.

j) Edge – The connection between one node and
another.

k) Path – A sequence of nodes and edges connect-
ing a node with a descendant.

l) Level – The level of a node is defined by 1 +
(the number of connections between the node
and the root).

m) Node Height – The height of a node is the
number of edges on the longest path between
that node and a leaf.

n) Tree Height – The height of a tree is the height
of its root node.

o) Depth – The depth of a node is the number of
edges from the tree’s root node to the node.

p) Forest – A forest is a set of n ≥ 0 disjoint trees.

2.1.3. Recursive Length Prefixes

Notation : rlp

Description : RLP encodes arrays of nested binary
data to an arbitrary depth; it is the main serialization
method for data in Ethereum. RLP encodes mainly
structure and does not pay heed to what type of data
it is encoding.

Positive RLP integers are represented with the most
significant value stored at the lowest memory adddress
(big endian) and without any leading zeroes. As a re-
sult, the RLP integer value for 0 is represented by an

aThe database backend is accessed by users through an external application, most likely an Ethereum client; see also: state database
bA bytearray is specific set of bytes [data] that can be loaded into memory. It is a structure for storing binary data, e.g. the contents of a

file.
cThis permanent data structure makes it possible to easily recall any previous state with its root hash keeping the resources off-chain and

minimizing on-chain storage needs.

2



2. Memory and Storage Beigepaper February 22, 2018–Version 0.9.5

empty byte-array. If a non-empty deserialized integer
begins with leading zeros it is invalid.2

The global state database is encoded as RLP for
fast traversal and inspection of data. In structure it
constitutes a mapping between addresses and account
states. Since it is stored on node operator’s comput-
ers, the tree can be traversed speedily and without
network delay. RLP encodes values as byte-arrays, or
as sequences of further values.3

This means that:

if rlp(x) = bytearray
then rlp(bytearray) = true
elif rlp(x) = value
then rlp(value) = true
elif rlp(x) = null
then rlp(x) = false

1. If the RLP-serialized byte-array contains a single
byte integer value less than 128, then the output
is exactly equal to the input.

2.2. The Block

A block is made up of 17 different elements. The
first 15 elements are part of what is called the block
header.

2.2.1. The Block Header

Description : The information contained in a block
besides the transactions list. This consists of:

1. Parent Hash – This is the Keccak-256 hash of
the parent block’s header.

2. Ommers Hash – This is the Keccak-256 hash
of the ommer’s list portion of this block.

3. Beneficiary – This is the 20-byte address to
which all block rewards are transferred.

4. State Root – This is the Keccak-256 hash of
the root node of the state trie, after a block and
its transactions are finalized.

5. Transactions Root – This is the Keccak-256
hash of the root node of the trie structure popu-
lated with each transaction from a Block’s trans-
action list.

6. Receipts Root – This is the Keccak-256 hash
of the root node of the trie structure populated
with the receipts of each transaction in the trans-
actions list portion of the block.

7. Logs Bloom – This is the bloom filter com-
posed from indexable information (log address
and log topic) contained in the receipt for each
transaction in the transactions list portion of a
block.

8. Difficulty – This is the difficulty of this block –
a quantity calculated from the previous block’s
difficulty and its timestamp.

9. Number – This is a quantity equal to the num-
ber of ancestor blocks behind the current block.

10. Gas Limit – This is a quantity equal to the
current maximum gas expenditure per block.

11. Gas Used – This is a quantity equal to the total
gas used in transactions in this block.

12. Timestamp – This is a record of Unix’s time
at this block’s inception.

13. Extra Data – This byte-array of size 32 bytes
or less contains extra data relevant to this block.

14. Mix Hash – This is a 32-byte hash that veri-
fies a sufficient amount of computation has been
done on this block.

15. Nonce – This is an 8-byte hash that verifies a
sufficient amount of computation has been done
on this block.

16. Ommer Block Headers – These are the same
components listed above for any ommers.

2.2.2. Block Footer

Transaction Series – This is the only non-header
content in the block.

2.2.3. Block Number and Difficulty

Note that is the difficulty of the genesis block. The
Homestead difficulty parameter, is used to affect a
dynamic homeostasis of time between blocks, as the
time between blocks varies, as discussed below, as
implemented in EIP-2. In the Homestead release, the
expo- nential difficulty symbol, causes the difficulty

3



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

to slowly increase (every 100,000 blocks) at an ex-
ponential rate, and thus increasing the block time
difference, and putting time pressure on transitioning
to proof-of-stake. This effect, known as the “difficulty
bomb”, or “ice age”, was explained in EIP-649 and
delayed and implemented earlier in EIP-2, was also
modified in EIP-100 with the use of x, the adjustment
factor, and the denominator 9, in order to target the
mean block time including uncle blocks. Finally, in
the Byzantium release, with EIP-649, the ice age was
delayed by creating a fake block number, which is
obtained by substracting three million from the ac-
tual block number, which in other words reduced and
the time difference between blocks, in order to allow
more time to develop proof-of-stake and preventing
the network from “freezing” up.3

2.2.4. Account Creation

Account creation definitively occurs with contract cre-
ation. Is related to: init. Lastly, there is the body
which is the EVM-code that executes if/when the
account containing it receives a message call.

2.2.5. Account State

The account state contains details of any particular ac-
count during some specified world state. The account
state is made up of four variables:

1. nonce The number of transactions sent from
this address, or the number of contract creations
made by the account associated with this ad-
dress.

2. balance The amount of Wei owned by this
account. Stored as a key/value pair inside the
state database.

3. storage_root A 256-bit (32-byte) hash of the
root node of a Merkle Patricia tree that encodes
the storage contents of the account.a

4. code_hash The hash of the EVM code of this
account’s contract. Code hashes are stored in
the state database. Code hashes are perma-
nent and they are executed when the address
belonging to that account receives a message
call.

2.2.6. Bloom Filter

The Bloom Filter is composed from indexable infor-
mation (logger address and log topics) contained in
each log entry from the receipt of each transaction in
the transactions list.

2.2.7. Transaction Receipts

3. Processing and Computation

3.1. The Transaction

The basic method for Ethereum accounts to interact
with eachother. The transaction is a single crypto-
graphically signed instruction sent to the Ethereum
network. There are two types of transactions: mes-

sage calls and contract creations. Transactions
lie at the heart of Ethereum, and are entirely respon-
sible for the dynamism and flexibility of the platform.
Transactions are the bread and butter of state tran-
sitions, that is of block additions, which contain all
of the computation performed in one block. Each
transaction applies the execution changes to the ma-
chine state, a temporary state which consists of all
the required changes in computation that must be
made before a block is finalized and added to the
world state.

3.1.1. Transactions Root

Notation : listhash

Alternatively: Transactions Root

Description : The Keccak-256 hash of the root
node that precedes the transactions in the
transactions_list section of a Block.

1. Nonce – The number of transactions sent by
the sender.

2. Gas Price – The number of Wei to pay the
network for unit of gas.

3. Gas Limit – The maximum amount of gas to
be used in while executing a transaction.

aA particular path from root to leaf in the state database

4



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

4. To – The 20-character recipient of a message
call.a

5. Value The number of Wei to be transferred to
the recipient of a message call.b

6. v, r, s

3.2. State Transition Function

State Transitions come about through the State Tran-
sition Function; this is a high-level abstraction of
several operations in Ethereum which comprise the
overall act of taking changes from the machine state
and adding them to the world state.

3.3. Mining

The Block Beneficiary is the 160-bit (20-byte) ad-
dress to which all fees collected from the successful
mining of a block are transferred. Apply Rewards is
the third process in block_finalization that sends
the mining reward to an account’s address. This is a
scalar value corresponding to the difficulty level of a
current block.

3.4. Verification

The process in The EVM that verifies Ommer Headers

3.5. Sender Function

A description that maps transactions to their sender
using ECDSA of the SECP-256k1 curve,

3.6. Serialization/Deserialization

This function expands a positive-integer value to a
big-endian byte-array of minimal length. When ac-
companied by a · operator, it signals sequence con-
catenation. The big_endian function accompanies
RLP serialization and deserialization.

3.7. Ethereum Virtual Machine

The EVM has a simple stack-based architecture. The
word size of the machine and thus size of stack is

256-bit. This was chosen to facilitate the Keccak-256
hash scheme and elliptic-curve based computation.
The memory model is a simple word-addressed byte-
array. The memory stack has a maximum size of
1024-bits. The machine also has an independent stor-
age model; this is similar in concept to the memory
but rather than a byte array, it is a word-addressable
word array. Unlike memory, which is volatile, storage
is non-volatile and is maintained as part of the system
state.

All locations in both storage and memory are well-
defined initially as zero. The machine does not follow
the standard von Neumann architecture. Rather than
storing program code in generally-accessible memory
or storage, it is stored separately in a virtual ROM
interactable only through specialized instructions.

The machine can have exceptional execution for sev-
eral reasons, including stack underflows and invalid in-
structions. Like the out-of-gas exception, they do not
leave state changes intact. Rather, the machine halts
immediately and reports the issue to the execution
agent (either the transaction processor or, recursively,
the spawning execution environment) which will deal
with it separately.

3.7.1. Fees

Fees (denominated in gas) are charged under three

distinct circumstances, all three as prerequisite to
the execution of an operation.3 The first and most
common is the fee intrinsic to the computation of the
operation. Secondly, gas may be deducted in order
to form the payment for a subordinate message call
or contract creation; this forms part of the payment
for the CREATE, CALL and CALLCODE operations.
Finally, gas may be paid due to an increase in the
usage of the memory.

Over an account’s execution, the total fee for
memory-usage payable is proportional to smallest
multiple of 32 bytes that are required such that all
memory indices (whether for read or write) are in-
cluded in the range. This is paid for on a just-in-time
basis; as such, referencing an area of memory at least
32 bytes greater than any previously indexed memory

aIn the case of a contract creation this is 0x000000000000000000.
bIn the case of a contract creation, an endowment to the newly created contract account.

5



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

will certainly result in an additional memory usage
fee. Due to this fee it is highly unlikely that addresses
will trend above 32-bit bounds.3

Implementations must be able to manage this even-
tuality. Storage fees have a slightly nuanced behaviour
to incentivize minimization of the use of storage
(which corresponds directly to a larger state database
on all nodes), the execution fee for an operation that
clears an entry in the storage is not only waived, a
qualified refund is given; in fact, this refund is effec-
tively paid up-front since the initial usage of a storage
location costs substantially more than normal usage.3

3.8. Execution

The execution of a transaction defines the state tran-
sition function: stf. However, before any transaction
can be executed it needs to go through the initial
tests of intrinsic validity.

3.8.1. Intrinsic Validity

The criteria for intrinsic validity are as follows:

� The transaction follows the rules for well-formed
RLP (recursive length prefix.)

� The signature on the transaction is valid.

� The nonce on the transaction is valid, i.e. it is
equivalent to the sender account’s current nonce.

� The gas_limit is greater than or equal to the
intrinsic_gas used by the transaction.

� The sender’s account balance contains the cost
required in up-front payment.

3.8.2. Transaction Receipt

While the amount of gas used in the execution and
the accrued log items belonging to the transaction are
stored, information concering the result of a transac-
tion’s execution is stored in the transaction receipt
tx_receipt. The set of log events which are created
through the execution of the transaction, logs_set in
addition to the bloom filter which contains the actual

information from those log events logs_bloom are lo-
cated in the transaction receipt. In addition, the post-
transaction state post_transaction(state) and the
amount of gas used in the block containing the trans-
action receipt post(gas_used) are stored in the trans-
action receipt. As a result, the transaction receipt is
a record of any given execution.

A valid transaction execution begins with a perma-
nent change to the state: the nonce of the sender ac-
count is increased by one and the balance is decreased
by the collateral_gasa which is the amount of gas
a transaction is required to pay prior to its execution.
The original transactor will differ from the sender if
the message call or contract creation comes from a
contract account executing code.

After a transaction is executed, there comes a pro-

visional state, which is a pre-final state. Gas used
for the execution of individual EVM opcodes prior to
their potential addition to the world_state creates:

� provisional state

� intrinsic gas, and

� an associated substate

� The accounts tagged for self-destruction
following the transaction’s completion.
self_destruct(accounts)

� The logs_series, which creates checkpoints in
EVM code execution for frontend applications
to explore, and is made up of thelogs_set and
logs_bloom from the tx_receipt.

� The refund balance.b

Code execution always depletes gas. If gas runs out,
an out-of-gas error is signaled (oog) and the resulting
state defines itself as an empty set; it has no effeffect
on the world state. This describes the transactional
nature of Ethereum. In order to affect the world

state, a transaction must go through completely or
not at all.

3.8.3. Code Deposit

If the initialization code completes successfully, a final
contract-creation cost is paid, the code-deposit cost,

aDesignated “intrinsic_gas” in the Yellowpaper
bThe sstore operation increases the amount refunded by resetting contract storage to zero from some non-zero state.

6



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

c, proportional to the size of the created contract’s
code.

3.8.4. Execution Model

Basics : The stack-based virtual machine which lies
at the heart of the Ethereum and performs the actions
of a computer. This is actually an instantial runtime
that executes several substates, as EVM computation
instances, before adding the finished result, all calcu-
lations having been completed, to the final state via
the finalization function.
In addition to the system state and the

remaining gas for computation there are several
pieces of important information used in the execution
environment that the execution agent must provide:

� account_address, the address of the account
which owns the code that is executing.

� sender_address the sender address of the trans-
action that originated this execution.

� originator_price the price of gas in the trans-
action that originated this execution.

� input_data, a byte array that is the input data
to this execution; if the execution agent is a
transaction, this would be the transaction data.

� account_address the address of the account
which caused the code to be executing; if the
execution agent is a transaction, this would be
the transaction sender.

� newstate_value the value, in Wei, passed to
this account if the execution agent is a transac-
tion, this would be the transaction value.3

� code array the byte array that is the machine
code to be executed.3

� block_header the block header of the present
block.

� stack_depth the depth of the present message-
call or contract-creation (i.e. the number of
CALLs or CREATEs being executed at present).3

The execution model defines the state_transition
function, which can compute the resultant state,
the remaining_gas, the accrued_substate and

the resultant_output, given these definitions.
For the present context, we will define it where
the accrued substate is defined as the tuple of
the self-destructs_set, the log_series, the
touched_accounts and the refunds.3

3.8.5. Execution Overview

The execution_function, in most practical imple-
mentations, will be modeled as an iterative
progression of the pair comprising the full
system_state and the machine_state. It’s defined
recursively with the iterator_function, which de-
fines the result of a single cycle of the state machine,
together with the halting_check function, which de-
termines if the present state is an exceptional halting
state of the machine and output_data of the instruc-
tion if the present state is a controlled_halt of the
machine. An empty sequence/series indicates that
execution should halt, while the empty set indicates
that execution should continue.

When evaluating execution, we extract the remain-
ing gas from the resultant machine state. It is thus
cycled (recursively or with an iterative loop) until ei-
ther exceptional_halt becomes true indicating that
the present state is exceptional and that the machine
must be halted and any changes discarded or until H
becomes a series (rather than the empty set) indicat-
ing that the machine has reached a controlled halt.

The machine state is defined as the tuple which
are the gas available, the program counter, the
memory contents, the active number of words
in memory (counting continuously from position 0),
and the stack contents. The memory contents are
a series of zeroes of size 2256.3

3.8.6. The Execution Cycle

Stack items are added or removed from the left-most,
lower-indexed portion of the series; all other items
remain unchanged: The gas is reduced by the instruc-
tion’s gas cost and for most instructions, the program
counter increments on each cycle, for the three ex-
ceptions, we assume a function J, subscripted by one
of two instructions, which evaluates to the according
value: otherwise In general, we assume the memory,

7



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

self-destruct set and system state don’t change: How-
ever, instructions do typically alter one or several
components of these values.

Provisional State A smaller, temporary state that
is generated during transaction execution. It contains
three sets of data:

3.8.7. Message Calls

A message call can come from a transaction or in-
ternally from contract code execution. It contains
the field data, which consists of user data input to a
message call. Messages allow communication between
accounts (whether contract or external.) Messages
can come in the form of msg_calls which give out-
put data. If it is a contract account, this code gets
executed when the account receives a message call.
Message calls and contract creations are both transac-
tions, but contract creations are never considered the
same as message calls. Message calls always transfer
some amount of value to an account. If the message
call is an account creation transaction then the value
given is takes on the role of an endowment toward
the new account. Every time an account receives a
message call it returns the body, something which
is triggered by the init function. User data input
to a message_call, structured as an unlimited size
byte-array.

Universal Gas Message calls always have a univer-
sally agreed-upon cost in gas. There is a strong dis-
tinction between contract creation transactions and
message call transactions. Computation performed,
whether it is a contract creation or a message call, rep-
resents the currently legal valid state. There can be
no invalid transactions from this point.3 There is also
a message call/contract creation stack. This stack
has a depth, depending on how many transactions
are in it. Contract creations and message calls have
entirely different ways of executing, and are entirely
different in their roles in Ethereum. The concepts
can be conflated. Message calls can result in compu-
tation that occurs in the next state rather than the
current one. If an account that is currently executing
receives a message call, no code will execute, because

the account might exist but has no code in it yet. To
execute a message call transactions are required:

� sender

� transaction originator

� recipient

� account (usually the same as the recipient)

� available gas

� value

� gas price

� An arbitrary length byte-array. arb array

� present depth of the message call/contract cre-
ation stack.

3.8.8. Contract Creation

To initiate contract creation you need to send trans-
action to nothing. This executes init and re-
turns the body. Init is executed only once at ac-

count_creation, and permanently discarded after
that.

3.8.9. Execution Environment

The Ethereum Runtime Environment is the environ-
ment under which Autonomous Objects execute in the
EVM: the EVM runs as a part of this environment.

3.8.10. Big Endian Function

This function expands a positive-integer value to a
big-endian byte array of minimal length. When ac-
companied by a · operator, it signals sequence con-
catenation. The big_endian function accompanies
RLP serialization and deserialization.

3.9. Gas

Gas is the fundamental network cost unit converted to
and from Ether as needed to complete the transaction
while it is sent. Gas is arbitrarily determined at the
moment it is needed, by the block and according to
the miners decision to charge certain fees. Miners
choose which gas prices they want to accept.

8



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

3.9.1. Gas Price/Gas Limit

Gas price is a value equal to the current limit of gas
expenditure per block, according to the miners. Any
unused gas is refunded to the sender. The canonical
gas limit of a block is expressed and is stabilized by
the time_stamp of the block.

Gas Price Stability Where new_header is the new
block’s header, but without the nonce and mix-hash
components, d being the current DAG, a large data
set needed to compute the mix-hash, and PoW is the
proof-of-work function this evaluates to an array with
the first item being the mix-hash, to proof that a cor-
rect DAG has been used, and the second item being a
pseudo-random number cryptographically dependent
on it. Given an approximately uniform distribution
in the range the expected time to find a solution is
proportional to the difficulty.3

This is the foundation of the security of the
blockchain and is the fundamental reason why a ma-
licious node cannot propagate newly created blocks
that would otherwise overwrite (“rewrite”) history. Be-
cause the nonce must satisfy this requirement, and
because its satisfaction depends on the contents of the
block and in turn its composed transactions, creating
new, valid, blocks is difficult and, over time, requires
approximately the total compute power of the trust-
worthy portion of the mining peers. Thus we are able
to define the block header validity function.

Gasused A value equal to the total gas used in trans-
actions in this block.

3.9.2. Machine State

The machine state is a tuple consisting of five ele-
ments:

1. gas_available

2. program_counter

3. memory_contents A series of zeroes of size 2256

4. memory_words.count

5. stack_contents

There is also, [to_execute]: the current operation
to be executed

3.9.3. Exceptional Halting

An exceptional halt may be caused by four conditions
existing on the stack with regard to the next opcode
in line for execution:

if
out_of_gas = true
or
bad_instruction = true
or
bad_stack_size = true
or
bad_jumpdest = true
then throw exception
else exec opcode x
then init control_halt

Exceptional halts are reserved for opcodes that fail
to execute. They can never be caused through an
opcode’s actual execution.

� The amount of remaining gas in each transaction
is extracted from information contained in the
machine_state

� A simple iterative recursive loop3 with a boolean
value:

– true indicating that in the run of computa-
tion, an exception was signaled

– false indicating in the run of computation,
no exceptions were signaled. If this value re-
mains false for the duration of the execution
until the set of transactions becomes a series
(rather than an empty set.) This means that
the machine has reached a controlled halt.

Substate A smaller, temporary state that is gener-
ated during transaction execution and runs parallel
to machine state. It contains three sets of data:

� The accounts tagged for self-destruction
following the transaction’s completion.
self_destruct(accounts)

aThe sstore operation increases the amount refunded by resetting contract storage to zero from some non-zero state.

9



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

� The logs_series, which creates checkpoints in
EVM code execution for frontend applications
to explore, and is made up of thelogs_set and
l ogs_bloom from the tx_receipt.

� The refund balance.a

3.9.4. EVM Code

The bytecode that the EVM can natively execute.
Used to explicitly specify the meaning of a message
to an account. A contract is a piece of EVM Code
that may be associated with an Account or an Au-
tonomous Object. EVM Assembly is the human
readable version of EVM Code.

3.10. Blocktree to Blockchain

The canonical blockchain is a path from root to
leaf through the entire block tree. In order to have
consensus over which path it is, conceptually we
identify the path that has had the most computa-
tion done upon it, or, the heaviest path. Clearly
one factor that helps determine the heaviest path
is the block number of the leaf, equivalent to the
number of blocks, not counting the unmined genesis
block, in the path. The longer the path, the greater
the total mining effort that must have been done in
order to arrive at the leaf. This is akin to existing
schemes, such as that employed in Bitcoin-derived
protocols. Since a block header includes the difficulty,
the header alone is enough to validate the computa-
tion done. Any block contributes toward the total
computation or total difficulty of a chain. Thus we
define the total difficulty of this_block recursively
by the difficulty of its parent block and the block
itself. The jobs of miners and validators are as
follows: Validate (or, if mining, determine)
ommers; validate (or, if mining, determine)
transactions; apply rewards; verify (or, if
mining, compute a valid) state and nonce.

3.11. Ommer Validation

The validation of ommer headers means nothing more
than verifying that each ommer header is both a valid
header and satisfies the relation of Nth-generation

ommer to the present block. The maximum of ommer
headers is two.

3.12. Transaction Validation

The given gasUsed must correspond faithfully to the
transactions listed, the total gas used in the block,
must be equal to the accumulated gas used according
to the final transaction.

3.13. Reward Application

The application of rewards to a block involves rais-
ing the balance of the accounts of the beneficiary
address of the block and each ommer by a certain
amount. We raise the block’s beneficiary account; for
each ommer, we raise the block’s beneficiary by 1 an
additional 32 of the block reward and the beneficiary
of the ommer gets rewarded depending on the block
number. This constitutes the block_finalization
state_transition_function If there are collisions
of the beneficiary addresses between ommers and the
block two ommers with the same beneficiary address
or an ommer with the same beneficiary address as the
present block,

additions are applied cumulatively. We define the
block reward as 3 Ether: State & Nonce Valida-
tion. We may now define the function, that maps
a block B to its initiation state: otherwise Here,
that means the hash of the root node of a trie of
state x; it is assumed that implementations will
store this in the state database, trivial and efficient
since the trie is by nature a resilient data structure.
And finally define the block_transition_function,
which maps an incomplete block to a com-
plete block with a specified dataset. As spec-
ified at the beginning of the present work, the
state_transition_function, which is defined in
terms of, the block_finalisation_function and,
the transaction_evaluation_function. As previ-
ously detailed, there is the nth corresponding status
code, logs and cumulative gas used after each transac-
tion, the fourth component in the tuple, has already
been defined in terms of the logs).

10



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

The nth state is given from applying the corre-
sponding transaction to the state resulting from the
previous transaction (or the block’s initial state in the
case of the first BYZANTIUM VERSION 3475aa8 -
2018-01-26 14 such transaction): otherwise In certain
cases we take a similar approach defining each item
as the gas used in evaluating the corresponding trans-
action summed with the previous item (or zero, if it
is the first), giving us a running total: the function
is used that was defined in the transaction execution
function. We define R[n] a similar manner. Finally, we
define new state given the block reward function
applied to the final transaction’s resultant state,
thus the complete block-transition mechanism, less
PoW, the proof-of-work function is defined.

3.14. Mining Proof-of-Work

Proof that a certain amount of mining has been done
exists as a cryptographic probability statement which
asserts beyond reasonable doubt that a particular
amount of computation has been expended in the de-
termination of some token value n. It is utilised to en-
force the uncompromisable security of the blockchain.
Since mining blocks comes with an attached reward,
the proof-of-work not only functions as a method of
securing confidence in the future and past state of the
machine, but also as a wealth distribution mechanism.
The proof of work function should be as accessible as
possible to as many people as possible.

To make the Ethereum Blockchain ASIC resistant,
the Proof-of-Work mechanism has been designed to be
sequential memory-hard. This means that the nonce
requires a lot of memory and bandwidth such that
the memory cannot be used in parallel to discover
multiple nonces simultaneously. Therefore, the proof-
of-work function takes the form of 2256m = Hm is
the new block’s header but without the nonce and
mix-hash components; Hn is the nonce of the header;
d is a large data set needed to compute the mix hash
and Hd is the new block’s difficulty value. PoW is
the proof-of-work function which evaluates to an ar-
ray with the first item being the mix hash and the
second item being a pseudorandom number which is
cryptographically dependent on H and d. The name
for this algorithm is Ethash.

3.14.1. Ethash

Ethash is the PoW algorithm for Ethereum 1.0. It is
the latest version of Dagger-Hashimoto, introduced by
Vitalik Buterin. The general route that the algorithm
takes is as follows: There exists a seed which can
be computed for each block by scanning through the
block headers up until that point. From the seed, one
can compute a pseudorandom cache, J cacheinit bytes
in initial size. Light clients store the cache. From the
cache, we can generate a dataset, ds bytes in initial
size, with the property that each item in the dataset
depends on only a small number of items from the
cache. Full clients and miners store the dataset. The
dataset grows linearly with time. Mining involves
grabbing random slices of the dataset and hashing
them together. Verification can be done with low
memory by using the cache to regenerate the spe-
cific pieces of the dataset that you need, so you only
need to store the cache. The large dataset is updated
once every 1 epoch blocks, so the vast majority of a
miner’s effort will be reading the dataset, not making
changes to it. The mentioned parameters as well as
the algorithm is explained in detail in appendix J. 12.
Implementing Contracts There are several patterns
of contracts engineering that allow particular useful
behaviours; two of these that I will briefly discuss are
data feeds and random numbers.

3.14.2. Difficulty Mechanism

This mechanism enforces a homeostasis in terms of
the time between blocks; a smaller period between
the last two blocks results in an increase in the diffi-
culty level and thus additional computation required,
lengthening the likely next period. Conversely, if the
period is too large, the difficulty, and expected time
to the next block, is reduced. The Total Compu-
tation is the difficulty state of the entire Ethereum
blockchain. The Block Difficulty is not a state of
the blockchain, but is local–particular to each specific
block. You reach the total difficulty by summing the
difficulty of all previous blocks and then adding the
present one.

The GHOST Protocol provides an alternative
solution to double-spend attacks from the original

11



3. Processing and Computation Beigepaper February 22, 2018–Version 0.9.5

solution in Satoshi Nakamoto’s Bitcoin Whitepaper.
Nakamoto solved the problem of double-spending by
requiring the network to agree on the first valid block.
impossible to submit a “double-spend” block without
having at least 50% of the network’s mining power to
force the longest chain. This is because the network
automatically chooses the longest chain. So even if
one wanted to submit two spend transactions in a row,
the network simply picks whichever one comes first,
ignoring the second because it no longer pertains to
the longest chain (which now contains the first block
that was sent) so the would-be hacker needs to submit
a new block, as the first double block is no longer
feasible.

3.15. Pseudorandom Numbers

Pseeudo-random numbers be generated by utilizing
data which is generally unknowable at the time of
transacting. Such data might include the block’s hash,
the block’s timestamp or the block’s beneficiary ad-
dress. The BLOCKHASH opcode uses the previous
256 blocks as pseudo-random numbers. One could
automate this randomness by adding a fixed value
and hashing the result.

3.16. Chainsize Limits

The state database won’t be forced to maintain all
past state trie structures into the future. It should
maintain an age for each node and eventually discard
nodes that are neither recent enough nor checkpoints;
checkpoints, or a set of nodes in the database that
allow a particular block’s state trie to be traversed,
could be used to place a maximum limit on the amount
of computation needed in order to retrieve any state
throughout the blockchain. Blockchain consolidation
could be used in order to reduce the amount of blocks
a client would need to download to act as a full min-
ing, node. A compressed archive of the trie structure
at given points in time (perhaps one in every 10,000th
block) could be maintained by the peer network, effec-
tively recasting the genesis block. This would reduce
the amount to be downloaded to a single archive plus
a hard maximum limit of blocks. Finally, blockchain
compression could perhaps be con- ducted: nodes in

state trie that haven’t sent/received a transaction in
some constant amount of blocks could be thrown out,
reducing both Ether-leakage and the growth of the
state database.3

3.17. Scalability

Scalability is a constant concern. With a general-
ized state transition function, it becomes difficult to
partition space, but several strategies exist that may
provide for scaling.

3.17.1. Sharding

Parallelization of transaction combination and block
building.

3.17.2. Casper

3.17.3. Plasma

12



A. Opcodes Beigepaper February 22, 2018–Version 0.9.5

A. Opcodes

A.1. 0x10’s: Comparisons and Bitwise Logic Operations

Data Opcode Gas Input Output Description
0x00 STOP 0 0 0 Halts execution.
0x01 ADD 3 2 1 Addition operation.
0x02 MUL 5 2 1 Multiplication operation.
0x03 SUB 3 2 1 Subtraction operation.
0x04 DIV 5 2 1 Integer division operation.
0x05 SDIV 5 2 1 Signed integer division operation (trun-

cated.)
0x06 MOD 5 2 1 Modulo remainder operation.
0x07 SMOD 5 2 1 Signed modulo remainder operation.
0x08 ADDMOD 8 3 1 Modulo addition operation.
0x09 MULMOD 8 3 1 Modulo multiplication operation.
0x0a EXP 10 2 1 Exponential operation.
0x0b SIGNEXTEND 5 2 1 Extend the length of two’s complemen-

tary signed integer.
0x10 LT 3 2 1 Less-than comparison.
0x11 GT 3 2 1 Greater-than comparison.
0x12 SLT 3 2 1 Signed less-than comparison.
0x13 SGT 3 2 1 Signed greater-than comparison.
0x14 EQ 3 2 1 Equality comparison.
0x15 ISZERO 3 1 1 Simple not operator.
0x16 AND 3 2 1 Bitwise and operation.
0x17 OR 3 2 1 Bitwise or operation.
0x18 XOR 3 2 1 Bitwise xor operation.
0x19 NOT 3 1 1 Bitwise not operation.
0x1a BYTE 3 2 1 Retrieve single byte from word.

A.2. 0x20’s: SHA3

Data Opcode Gas Input Output Description
0x20 SHA3 30 2 1 Compute a Keccak-256 hash.

A.3. 0x30’s: Environmental Information

Data Opcode Gas Input Output Description
0x30 ADDRESS 2 0 1 Get the address of the currently execut-

ing account.
0x31 BALANCE 400 1 1 Get the balance of the given account.
0x32 ORIGIN 2 0 1 Get execution origination address. This

is always the original sender of a trans-
action, never a contract account.

13



A. Opcodes Beigepaper February 22, 2018–Version 0.9.5

0x33 CALLER 2 0 1 Get caller address. This is the address of
the account that is directly responsible
for this execution.

0x34 CALLVALUE 2 0 1 Get deposited value by the instruc-
tion/transaction responsible for this ex-
ecution.

0x35 CALLDATALOAD 3 1 1 Get input data of the current environ-
ment.

0x36 CALLDATASIZE 2 0 1 Get size of input data in current environ-
ment. This refers to the optional data
field that can be passed with a message
call instruction or transaction.

0x37 CALLDATACOPY 3 3 0 Copy input data in the current envi-
ronment to memory. This refers to the
optional data field passed with the mes-
sage call instruction or transaction.

0x38 CODESIZE 2 0 1 Get size of code running in the current
environment.

0x39 CODECOPY 3 3 0 Copy the code running in the current
environment to memory.

0x3a GASPRICE 2 0 1 Get the price of gas in the current envi-
ronment. This is the gas price specified
by the originating transaction.

0x3b EXTCODESIZE 700 1 1 Get the size of an account’s code.
0x3c EXTCODECOPY 700 4 0 Copy an account’s code to memory.
0x3d RETURNDATASIZE 2 0 1
0x3e RETURNDATACOPY3 3 0

A.4. 0x40’s: Block Data

Data Opcode Gas Input Output Description
0x40 BLOCKHASH 20 1 1 Get the hash of one of the 256 most

recent blocks. a

0x41 COINBASE 2 0 1 Look up a block’s beneficiary address
by its hash.

0x42 TIMESTAMP 2 0 1 Look up a block’s timestamp by its hash.
0x43 NUMBER 2 0 1 Look up a block’s number by its hash.
0x44 DIFFICULTY 2 0 1 Look up a block’s difficulty by its hash.
0x45 GASLIMIT 2 0 1 Look up a block’s gas limit by its hash.

A.5. 0x50’s: Stack, memory, storage, and flow operations.

Data Opcode Gas Input Output Description
aA value of 0 is left on the stack if the block number is more than 256 in number behind the current one, or if it is a number greater than

the current one.

14



A. Opcodes Beigepaper February 22, 2018–Version 0.9.5

0x50 POP 2 1 0 Removes an item from the stack.
0x51 MLOAD 3 1 1 Load a word from memory.
0x52 MSTORE 3 2 0 Save a word to memory.
0x53 MSTORE8 3 2 0 Save a byte to memory.
0x54 SLOAD 200 1 1 Load a word from storage.
0x55 SSTORE 0 2 0 Save a word to storage.
0x56 JUMP 8 1 0 Alter the program counter.
0x57 JUMPI 10 2 0 Conditionally alter the program

counter.
0x58 PC 2 0 1 Look up the value of the program

counter prior to the increment result-
ing from this instruction.

0x59 MSIZE 2 0 1 Get the size of active memory in bytes.
0x5a GAS 2 0 1 Get the amount of available gas, includ-

ing the corresponding reduction for the
cost of this instruction.

0x5b JUMPDEST 1 0 0 Mark a valid destination for jumps. a

A.6. 0x60-70’s: Push Operations

Data Opcode Gas Input Output Description
0x60 PUSH1 - 0 1 Place a 1-byte item on the stack.
0x61 PUSH2 - 0 1 Place a 2-byte item on the stack.
0x62 PUSH3 - 0 1 Place a 3-byte item on the stack.
0x63 PUSH4 - 0 1 Place a 4-byte item on the stack.
0x64 PUSH5 - 0 1 Place a 5-byte item on the stack.
0x65 PUSH6 - 0 1 Place a 6-byte item on the stack.
0x66 PUSH7 - 0 1 Place a 7-byte item on the stack.
0x67 PUSH8 - 0 1 Place a 8-byte item on the stack.
0x68 PUSH9 - 0 1 Place a 9-byte item on the stack.
0x69 PUSH10 - 0 1 Place a 10-byte item on the stack.
0x6a PUSH11 - 0 1 Place a 11-byte item on the stack.
0x6b PUSH12 - 0 1 Place a 12-byte item on the stack.
0x6c PUSH13 - 0 1 Place a 13-byte item on the stack.
0x6d PUSH14 - 0 1 Place a 14-byte item on the stack.
0x6e PUSH15 - 0 1 Place a 15-byte item on the stack.
0x6f PUSH16 - 0 1 Place a 16-byte item on the stack.
0x70 PUSH17 - 0 1 Place a 17-byte item on the stack.
0x71 PUSH18 - 0 1 Place a 18-byte item on the stack.
0x72 PUSH19 - 0 1 Place a 19-byte item on the stack.
0x73 PUSH20 - 0 1 Place a 20-byte item on the stack.
0x74 PUSH21 - 0 1 Place a 21-byte item on the stack.
0x75 PUSH22 - 0 1 Place a 22-byte item on the stack.

aThis operation has no effect on the machine_state during execution.

15



A. Opcodes Beigepaper February 22, 2018–Version 0.9.5

0x76 PUSH23 - 0 1 Place a 23-byte item on the stack.
0x77 PUSH24 - 0 1 Place a 24-byte item on the stack.
0x78 PUSH25 - 0 1 Place a 25-byte item on the stack.
0x79 PUSH26 - 0 1 Place a 26-byte item on the stack.
0x7a PUSH27 - 0 1 Place a 27-byte item on the stack.
0x7b PUSH28 - 0 1 Place a 28-byte item on the stack.
0x7c PUSH29 - 0 1 Place a 29-byte item on the stack.
0x7d PUSH30 - 0 1 Place a 30-byte item on the stack.
0x7e PUSH31 - 0 1 Place a 31-byte item on the stack.
0x7f PUSH32 - 0 1 Place a 32-byte item on the stack.

A.7. 0x80’s: Duplication Operations

Data Opcode Gas Input Output Description
0x80 DUP1 - 1 2 Duplicate the 1st item in the stack.
0x81 DUP2 - 2 3 Duplicate the 2nd item in the stack.
0x82 DUP3 - 3 4 Duplicate the 3rd item in the stack.
0x83 DUP4 - 4 5 Duplicate the 4th item in the stack.
0x84 DUP5 - 5 6 Duplicate the 5th item in the stack.
0x85 DUP6 - 6 7 Duplicate the 6th item in the stack.
0x86 DUP7 - 7 8 Duplicate the 7th item in the stack.
0x87 DUP8 - 8 9 Duplicate the 8th item in the stack.
0x88 DUP9 - 9 10 Duplicate the 9th item in the stack.
0x89 DUP10 - 10 11 Duplicate the 10th item in the stack.
0x8a DUP11 - 11 12 Duplicate the 11th item in the stack.
0x8b DUP12 - 12 13 Duplicate the 12th item in the stack.
0x8c DUP13 - 13 14 Duplicate the 13th item in the stack.
0x8d DUP14 - 14 15 Duplicate the 14th item in the stack.
0x8e DUP15 - 15 16 Duplicate the 15th item in the stack.
0x8f DUP16 - 16 17 Duplicate the 16th item in the stack.

A.8. 0x90’s: Swap Operations

Data Opcode Gas Input Output Description
0x90 SWAP1 - 2 2 Exchange the 1st and 2nd stack items.
0x91 SWAP2 - 3 3 Exchange the 1st and 3rd stack items.
0x92 SWAP3 - 4 4 Exchange the 1st and 4th stack items.
0x93 SWAP4 - 5 5 Exchange the 1st and 5th stack items.
0x94 SWAP5 - 6 6 Exchange the 1st and 6th stack items.
0x95 SWAP6 - 7 7 Exchange the 1st and 7th stack items.
0x96 SWAP7 - 8 8 Exchange the 1st and 8th stack items.
0x97 SWAP8 - 9 9 Exchange the 1st and 9th stack items.
0x98 SWAP9 - 10 10 Exchange the 1st and 10th stack items.
0x99 SWAP10 - 11 11 Exchange the 1st and 11th stack items.
0x9a SWAP11 - 12 12 Exchange the 1st and 12th stack items.

16



A. Opcodes Beigepaper February 22, 2018–Version 0.9.5

0x9b SWAP12 - 13 13 Exchange the 1st and 13th stack items.
0x9c SWAP13 - 14 14 Exchange the 1st and 14th stack items.
0x9d SWAP14 - 15 15 Exchange the 1st and 15th stack items.
0x9e SWAP15 - 16 16 Exchange the 1st and 16th stack items.
0x9f SWAP16 - 17 17 Exchange the 1st and 17th stack items.

A.9. 0xa0’s: Logging Operations

Data Opcode Gas Input Output Description
0xa0 LOG0 375 2 0 Append log record with 0 topics.
0xa1 LOG1 750 3 0 Append log record with 1 topic.
0xa2 LOG2 1125 4 0 Append log record with 2 topic.
0xa3 LOG3 1500 5 0 Append log record with 3 topic.
0xa4 LOG4 1875 6 0 Append log record with 4 topic.

A.10. 0xf0’s: System Operations

Data Opcode Gas Input Output Description
0xf0 CREATE 32000 3 1 Create a new contract account.

Operand order is: value, input offset,
input size.

0xf1 CALL 700 7 1 Message-call into an account. The
operand order is: gas, to, value, in offset,
in size, out offset, out size.

0xf2 CALLCODE 700 7 1 Message-call into this account with an al-
ternative account’s code. Exactly equiv-
alent to CALL, except the recipient is
the same account as at present, but the
code is overwritten.

0xf3 RETURN 0 2 0 Halt execution, then return output data.
This defines the output at the moment
of the halt.

0xf4 DELEGATECALL 700 6 1 Message-call into this account with an
alternative account’s code, but with per-
sisting values for sender and value.
DELEGATECALL takes one less argu-
ment than CALL. This means that the
recipient is in fact the same account as
at present, but that the code is overwrit-
ten and the context is almost entirely
identical.

0xf5 CALLBLACKBOX 40 7 1 -
0xfa STATICCALL 40 6 1 -
0xfd REVERT 0 2 0 -
0xfe INVALID - 1 0 Designated invalid instruction.

17



B. Higher Level Languages Beigepaper February 22, 2018–Version 0.9.5

0xff SELFDESTRUCT 5000 1 0 Halt execution and register the account
for later deletion.

B. Higher Level Languages

B.1. Lower-Level Lisp

The Lisp-Like low level language: a human-writable language used for authoring simple contracts and
trans-compiling to higher-level languages.

B.2. Solidity

A language similar in syntax to Javascript, and the most commonly used language for creating smart contracts
in Ethereum.

B.3. Serpent

A deprecated language.

B.4. Vyper

A newer language for developing smart contracts – still under development.

18



B. References Beigepaper February 22, 2018–Version 0.9.5

References

[1] W. contributors, Tree (data structure) —
wikipedia, the free encyclopedia, [Online; ac-
cessed 15-December-2017], 2017. [Online]. Avail-
able: https://en.wikipedia.org/w/index.
php?title=Tree_(data_structure)&oldid=
813972413 (cit. on p. 2).

[2] E. Foundation, Ethereum whitepaper, https:
//github.com/ethereum/wiki/wiki/White-
Paper, 2017 (cit. on p. 3).

[3] D. G. Wood, Ethereum: A secure decentralised
generalised transaction ledger, https : / /
github.com/ethereum/yellowpaper, 2017 (cit.
on pp. 3–9, 12).

19

https://en.wikipedia.org/w/index.php?title=Tree_(data_structure)&oldid=813972413
https://en.wikipedia.org/w/index.php?title=Tree_(data_structure)&oldid=813972413
https://en.wikipedia.org/w/index.php?title=Tree_(data_structure)&oldid=813972413
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper


Glossary Beigepaper February 22, 2018–Version 0.9.5

Glossary

account state The state of a particular account–a
section of the total world state. Comprises: the
nonce, balance, storage root, and code hash
of the account.. 1, 20

addresses 20 character strings, specifically the right-
most 20 characters of the Keccak-256 hash of
the RLP-derived mapping which contains the
sender’s address and the nonce of the block.. 20

beneficiary The 20-character (160-bit) address to
which all fees collected from the successful min-
ing of a block are transferred. 20

block header All the information in a block besides
transaction information. 20

Contract A piece of EVM Code that may be associ-
ated with an Account or an Autonomous Object.
20

Cryptographic hashing functions Hash functions
make secure blockchains possible by establishing
universal inputs for which there are limited, usu-
ally only one, possible output yet that output is
unique.. 20

Ethereum Runtime Environment The environment
which is provided to an Autonomous Object ex-
ecuting in the EVM. Includes the EVM but also
the structure of the world state on which the re-
lies for certain I/O instructions including CALL
& CREATE. 20

EVM Assembly The human readable version of EVM
code. 20

EVM Code The bytecode that the EVM can natively
execute. Used to formally specify the meaning
and ramifications of a message to an Account.
20

Gas The fundamental network cost unit; gas is paid
for exclusively by Ether. 20

Message Data (as a set of bytes) and Value (specified
in Wei) that is passed between two accounts.. 20

serialization Serialization is the process of converting
an object into a stream of bytes in order to store
the object or transmit it to memory, a database,
or a file. Its main purpose is to save the machine
state of an object in order to be able to recreate
it when needed.. 20

state machine The term State Machine is reserved
for any simple or complex process that moves
deterministically from one discrete state to the
next.. 20

state database A database stored off-chain, [i.e. on
the computer of some user running an Ethereum
client] which contains a trie structure mapping
bytearrays (organized chunks of binary data)
to other bytearrays. The relationships between
each node on this trie constitutes a mapping of
Ethereum’s state.. 1, 4, 20

storage root One aspect of an account’s state:
this is the hash of the triea that decides the
storage contents of the account. 20

Storage State The information particular to a given
account that is maintained between the times
that the account’s associated EVM Code runs.
20

transaction A piece of data, signed by an External
Actor. It represents either a Message or a new
Autonomous Object. Transactions are recorded
into each block of the blockchain.. 20

Acronyms

ERE Ethereum Runtime Environment. 20

EVM Ethereum Virtual Machine. 20

RLP Recursive Length Prefix. 20

aA particular path from root to leaf in the state database

20



B. Index Beigepaper February 22, 2018–Version 0.9.5

Index

160 bit, 5
256 bit, 4, 5
50% attack, 12

abstract state-machine, 1
account, 8
account address, 7
account addresses, 2
account balance, 4
account body, 4
account code hash, 4
account creation, 4, 8
account init, 4
account nonce, 4
account state, 4
account states, 2
account storage root, 4
accrued substate, 7
accumulated gas used, 10
age, 12
ancestor node, 2
apply rewards, 5, 10
arbitrarily determined, 8
arbitrary length byte-array, 8
asic resistant, 11
autonomous objects, 8
available gas, 8

balance, 1
beneficiary, 3
beneficiary address, 10
big endian, 3
big endian function, 8
Bitcoin, 1
Bitcoin Whitepaper, 12
block, 9
block beneficiary, 5
block composition, 3
block contents, 9
block difficulty, 11
block finalization state transition function, 10
block header, 3, 7
block header validity function, 9
block number, 4, 10

block reward, 5, 10
block reward function, 11
block rewards, 3
BLOCKHASH, 12
body, 8
branch node, 2
byte array, 5
byzantium, 4

cache, 11
canonical blockchain, 10
canonical gas, 9
casper, 12
certainty, 1
checkpoint nodes, 12
checkpoints, 10
child node, 2
code array, 7
collisions, 10
complete block, 10
computation, 8
computation of operation, 5
compute valid nonce, 10
compute valid state, 10
contract creation, 4, 8
contract creation stack, 8
contract creation transactions, 8
controlled halt, 9
correct DAG, 9
cumulative difficulty, 11
cumulative gas, 10

DAG, 9
data structure, 2
dataset, 11
dataset slice, 12
descendant node, 2
deserialization, 5, 8
deterministic, 1
difficulty, 3, 9
difficulty bomb, 4
difficulty mechanism, 11
discard nodes, 12
double-spend problem, 12

21



Index Beigepaper February 22, 2018–Version 0.9.5

dynamic difficulty homeostasis, 4

EIP 100, 4
EIP 2, 4
EIP 649, 4
elliptic curve , 5
elliptic curve computation, 5
elliptic curve cryptography, 5
empty byte-array, 3
empty byte-sequence, 8
empty set, 9
ere, 8
ethash, 11
Ether, 1
ethereum runtime environment, 8
EVM, 5
EVM assembly, 10
EVM code, 10
evm computation instances, 7
exceptional halt, 5, 7
executed, 1
execution, 5
execution environment, 7
execution function, 7
execution model, 7
explicitly specify meaning, 10
exponential difficulty increase, 4
extra data, 3
extract remaining gas, 7

fees, 5
finalization function, 7
Finney, 1
forest, 2

gas, 5, 8
gas available, 9
gas deducted, 5
gas expenditure per block, 9
gas limit, 3, 5, 6
gas paid for increased use of memory, 5
gas price, 5, 6, 8
gas refund clearing space, 6
gas used, 3, 6, 9, 10
genesis block, 10
genesis difficulty, 4
GHOST protocol, 12

global state database, 3

halting function, 7
halting state, 7
hash scheme, 5
heaviest path, 10
homestead, 4
homestead difficulty parameter, 4

ice age, 4
incomplete block, 10
init, 8
input data, 7
inspection of data, 3
instantial runtime, 7
intrinsic validity, 6
invalid instruction, 5
iterative progression, 7
iterator function, 7

keccak 256, 3, 5

leaf node, 2, 4
ledger, 1
log events, 6
log items, 6
log series, 7
logs bloom, 3, 10
logs series, 10
logs set, 10
longest chain, 12

machine halt, 5
machine instructions, 1
machine state, 4, 9
machine storage, 5
mapping, 2
mapping between account states, 3
mapping between addresses, 3
memory, 5
memory contents, 9
memory model, 5
memory model volatility of, 5
memory size, 5
memory stack, 5
memory usage fee, 6
memory word count, 9

22



Index Beigepaper February 22, 2018–Version 0.9.5

merkle-patricia trees, 2
merkle-patricia tries, 2
merkletrees, 2
message call, 5, 8
message call transactions, 8
miner choice, 8
miners, 9
minimize storage use, 6
mining, 1
mining effort, 10
mix hash, 3, 9, 11
modified merkletrees, 2

native currency, 1
natively execute, 10
nested binary data, 2
network cost unit, 8
newstate value, 7
no leading zeroes, 3
node depth, 2
node height, 2
node operator computer, 3
non empty deserialized integer, 3
non-standard architecture, 5
nonce, 3, 9
nonce validation, 10
number, 3

ommer, 10
ommer block headers, 3
ommer headers, 10
ommer validation, 10
ommers hash, 3
opcodes, 1
originator price, 7
out-of-gas, 5

parent hash, 3
parent node, 2
payment, 5
plasma, 12
positive integer, 8
post transaction state, 6
present depth, 8
probability statement, 11
program counter, 9
proof-of-work, 11

pseudocode, 1
pseudorandom number generation, 12

receipts root, 3
recipient, 8
refunded, 9
refunds, 7
remaining gas, 7
report exception, 5
resultant output, 7
resultant state, 7
RLP, 2
rlp, 8
RLP encodes as byte-arrays, 3
RLP integers, 3
RLP serialized byte-array, 3
root node, 2, 4

Satoshi Nakamoto, 12
scalability, 12
seed, 11
self-destructs set, 7
sender, 8
sender account, 6
sender address, 7
sequence concatenation, 8
serialization, 5, 8
sharding, 12
sibling node, 2
single byte integer, 3
singleton, 1
speedy traversal of data, 3
stack based, 5, 7
stack based architecture, 5
stack contents, 9
stack underflow, 5
state database, 4, 12
state machine cycle, 7
state root, 3
state transition, 4
state transition function, 7
state unchanged, 5
status code, 10
storage model, 5
substates, 7
system state, 5, 7

23



Index Beigepaper February 22, 2018–Version 0.9.5

Szabo, 1

tagged for self destruction, 10
time stamp, 9
timestamp, 3
timestamped, 1
to, 5
to execute, 9
total difficulty, 11
total fee, 6
total gas used, 10
totaly difficulty, 10
touched accounts, 7
transaction, 4
transaction execution, 6
transaction execution function, 11
transaction nonce, 6
transaction originator, 8
transaction receipt, 6, 10
transaction series, 9
transaction signature, 6
transaction validation, 10
transactions, 10
transactions root, 3
tree arbitrary depth, 2
tree database, 2
tree degree, 2
tree edge, 2
tree height, 2

tree level, 2
tree path, 2
trie database, 2
trusted, 1

universal gas, 8
unstoppable, 1
unused gas, 9
upfront payment, 6

valid header, 10
valid state, 8
value, 5, 8, 9
verification, 5
virtual machine, 1, 7
virtual ROM, 5

Wei, 1
wei, 4
well defined memory, 5
well defined storage, 5
well-formed RLP, 6
word addressable, 5
word addressed, 5
word array, 5
word size, 5
world state, 2

Yellowpaper, 1

24


	Imagining Bitcoin as a Computer
	Native Currency

	Memory and Storage
	World State
	Merkle-Patricia Trees
	Tree Terminologywiki:xxx
	Recursive Length Prefixes

	The Block
	The Block Header
	Block Footer
	Block Number and Difficulty
	Account Creation
	Account State
	Bloom Filter
	Transaction Receipts


	Processing and Computation
	The Transaction
	Transactions Root

	State Transition Function
	Mining
	Verification
	Sender Function
	Serialization/Deserialization
	Ethereum Virtual Machine
	Fees

	Execution
	Intrinsic Validity
	Transaction Receipt
	Code Deposit
	Execution Model
	Execution Overview
	The Execution Cycle
	Message Calls
	Contract Creation
	Execution Environment
	Big Endian Function

	Gas
	Gas Price/Gas Limit
	Machine State
	Exceptional Halting
	EVM Code

	Blocktree to Blockchain
	Ommer Validation
	Transaction Validation
	Reward Application
	Mining Proof-of-Work
	Ethash
	Difficulty Mechanism

	Pseudorandom Numbers
	Chainsize Limits
	Scalability
	Sharding
	Casper
	Plasma


	Opcodes
	0x10's: Comparisons and Bitwise Logic Operations
	0x20's: SHA3
	0x30's: Environmental Information
	0x40's: Block Data
	0x50's: Stack, memory, storage, and flow operations.
	0x60-70's: Push Operations
	0x80's: Duplication Operations
	0x90's: Swap Operations
	0xa0's: Logging Operations
	0xf0's: System Operations

	Higher Level Languages
	Lower-Level Lisp
	Solidity
	Serpent
	Vyper

	References
	Glossary
	Acronyms
	Index

